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Abstract

We consider estimation of peer e¤ects in social network models where some network links

are incorrectly measured. We show that if the number of mismeasured links does not grow too

quickly with the sample size, then standard instrumental variables estimators that ignore the

measurement error remain consistent, and standard asymptotic inference methods remain valid.

These results hold even when measurement errors in the links are correlated with regressors, or

with the model errors. Monte Carlo simulations and real data experiments conÖrm our results in

Önite samples. These Öndings imply that researchers can ignore small amounts of measurement

errors in networks.

JEL classiÖcation: C31, C51

Keywords: Social networks, Peer e¤ects, MisclassiÖed links, Missing links, Mismeasured

network.

1 Introduction

In many social and economic environments, an individualís behavior or outcome (such as a

consumption choice or a test score) depends not only on his or her own characteristics, but also on

the behavior and characteristics of other individuals. Call such dependence between two individuals

a link, and call individuals with such links friends. A social network consists of a group of linked

individuals. Each individual may have a di¤erent set of friends in the network, and each individual

may assign heterogenous weights to his or her links. The structure of a social network is fully

characterized by a square adjacency matrix, which lists all links (with possibly heterogenous weights)

among the individuals in the network.

Much of the econometric literature on social networks focuses on disentangling and estimat-

ing various social or network e¤ects, based on observed outcomes and characteristics of network

members. These structural parameters include the e¤ects on each individualís outcome by (i) the

individualís own characteristics (direct e¤ects) and possibly group characteristics (correlated ef-

fects), (ii) the characteristics of the individualís friends (contextual e¤ects) and (iii) the outcomes

of the individualís friends (peer e¤ects). Standard methods of identifying and estimating these
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structural network e¤ect parameters assume that the adjacency matrix of links among individuals

in the sample is perfectly observed.

1.1. Our contribution. We consider the case where network links are misclassiÖed, or generally

measured with errors. Here we provide good news for empirical researchers, by showing that

relatively small amounts of measurement error in the network can be safely ignored in estimation.

More precisely, we show that instrumental variable estimators like Bramoullé, Djebbari and Fortin

(2009), and their standard errors, remain consistent and valid, despite the presence of misclassiÖed,

unreported, or mismeasured links, as long as the number and size of these measurement errors grows



one in which n grows to inÖnity. Our main results focus on situations where the sum of network

measurement errors (the di¤erences between H�n and G�n) grows at a rate less than
p
n. Here we list

a range of empirical situations in which network measurement errors would be expected to grow at

these slow rates.

Consider Örst the common modeling environment in which data are collected from many groups

of individuals, like villages or schools. Data are often collected on links within these groups, such

as friendships within class rooms, or kinship relationships within villages. Models using such data

often assume no links between individuals in di¤erent groups, either for theoretical convenience,

or because data are not collected on links between groups. This is equivalent to misclassifying as

zero all links that exist outside of diagonal blocks of G�n. In other words, this means using a block-

diagonal H�n in place of the actual G�n in the data-generating process. The measurement errors will

grow at a rate slower than
p
n if the number of sampled groups grows at rate slower than

p
n, and

the number of links between groups is relatively small.

Another example comes from panel data. Suppose the sample consists of L individuals, each of

which is observed for T time periods, so the sample size is n = LT . For example, the data could





to be completely di¤erent, by assuming that two di¤erent adjacency matrices are observed, one a

mismeasured version of G�n and the other a mismeasure of C�n. We do not do so to save on notation,

and because it is extremely rare in practice to observe two di¤erent adjacency matrices, where one

is known to measure peer e¤ects and the other is known to measure contextual e¤ects.

Like G�n and C�n, the matrix H�n by convention has zeros on the diagonal. When G�n;ij equals

zero or one, misclassiÖcation of that link corresponds to H�ij = 1�G�ij , and similarly for C�ij . More



pointed out by Manski (1993). This identiÖcation problem can be overcome in models with more

complicated social interaction structures. Lee (2007) uses conditional maximum likelihood and

instrumental variable methods to estimate peer and contextual e¤ects in a spatial autoregressive

social interaction model, assuming links are perfectly observed in the data. Bramoullé, Djebbari

and Fortin (2009) and Lin (2010) provide speciÖc conditions on observed network structure in

order to identify peer e¤ects in social interaction models, using characteristics of friends of friends

as instruments.

Given results like these, the model described in the introduction has been widely used to estimate

peer e¤ects in a variety of settings (usually assuming either C�n = G�n or C�n = 0, though see Blume

et. al. 2015). Examples are studies of peer ináuence on studentsíacademic performance, sport and

club activities, and delinquent behaviors (Hauser et al., 2009; Calvó-Armengol et al., 2009; Lin,

2010; Lee et al., 2010; Liu et al., 2014; Boucher et al., 2014; Patacchini and Zenou, 2012). These

models all assume that the network structure is correctly measured in the data.

Regarding selection and comparison of adjacency matrices, LeSage and Pace (2009) use the

Bayesian posterior distribution to choose among models with di¤erent adjacency matrices. Em-

pirical research may also report estimates using di¤erent link weights as robustness checks. These

practices are feasible in, e.g., spatial econometric models, where link weights are assumed to be a

function of observable geographic information, as in gravity models of trade. Errors in construct-

ing such links would Öt in our framework. There is also a small literature on identiÖcation and

estimation of peer e¤ects when networks are unobserved. Examples include de Paula et al. (2018)

and Lewbel et al. (2021).

The issue of potentially misclassiÖed links is acknowledged and discussed in Patacchini and

Venanzoni (2014), Liu et al. (2014), and Lin (2015) among others. But these papers do not provide

a formal analysis of the asymptotic impact of mismeasured links on the performance of standard

estimators. Gri¢ th (2021) studied the impact on inference when misclassiÖcation in the adjacency

matrix occurs because of binding caps on the number of self-reported links. Our results Öll a void

in the literature by analyzing how ignoring small amounts of general measurement errors in the

adjacency matrix a¤ects the consistency of standard estimators and the validity of inference.4

4 Referring to potential omission of friends, Patacchini and Venanzoni (2014) say that, ìin the large majority of

cases (more than 94%), students tend to nominate best friends who are students in the same school and thus are

systematically included in the network (and in the neighborhood patterns of social interactions)î. Liu et al. (2014)

report that ìless than 1% of the students in our sample show a list of ten best friends, less than 3% a list of Öve

males and roughly 4% a list of Öve females. On average, they declare that they have 4.35 friends with a small

dispersion around this mean value (standard deviation equal to 1.41), and in the large majority of cases (more than

90%) the nominated best friends are in the same school.î Lin (2015) says, ìthis nomination constraint only a¤ects

a small portion of our sample, as less than 10% of the sample have listed Öve male or female friends. Therefore,

this restriction should not have a signiÖcant impact on the results.î This last speculation is precisely what our Örst

set of results establishes: that consistency of estimates will not be e¤ected if the number of omitted (and hence

misclassiÖed) links is su¢ ciently small.
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3 2SLS Estimation With Mismeasured Links

In this section we derive asymptotic properties of the 2SLS estimator for the model in (1) when

the mismeasured adjacency matrix





As noted in the introduction, even slowly growing measurement errors could asymptotically

corrupt b� if the stochastic order of quadratic terms in b�� �0 isnít bounded. The closed form of the



3. The average standard errors do a good job of estimating the standard deviations for all

values of s. This is as expected, because the problem with inference for larger values of s is that

the bias in the estimator shrinks at rate ns�1. Similarly, with s � 0:5, the parameter estimates

deteriorate primarily due to bias rather than variance.

4. With both the true and mismeasured adjacency matrices, the mean-squared errors are much

smaller for the direct e¤ects � than for the peer and contextual e¤ects � and , and the mean

squared errors are much lower for the discrete regressor e¤ects �1 and 1 than for the continuous

regressor e¤ects �2 and 2
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Table 1. 2SLS Estimators with MisclassiÖed Links
n = 200 n = 500 n = 1000

m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. m.s.e. bias std a.s.e.

True Mis.# 0 0 0

� 3.880 -0.114 1.971 2.197 1.519 0.031 1.235 1.310 0.762 0.065 0.873 0.887

� 0.336 0.025 0.581 0.654 0.131 -0.010 0.362 0.386 0.068 -0.019 0.260 0.264

�1 0.003 0.005 0.058 0.058 0.001 -0.003 0.036 0.036 0.001 -0.000 0.027 0.026

�2 0.005 0.008 0.072 0.073 0.002 0.001 0.048 0.045 0.001 -0.000 0.032 0.032

1 0.802 -0.029 0.898 1.006 0.301 0.019 0.549 0.597 0.165 0.030 0.406 0.410

2 1.571 -0.040 1.256 1.348 0.561 0.020 0.750 0.796 0.278 0.032 0.528 0.545

s = 0:1 Mis.# 66 81 88

� 4.100 -0.058 2.029 2.254 1.576 0.033 1.258 1.325 0.780 0.070 0.883 0.894

� 0.365 0.008 0.605 0.672 0.135 0.010 0.368 0.391 0.070 -0.020 0.263 0.266

�1 0.003 0.004 0.058 0.058



5 Application

Lin and Lee (2010) model teenage pregnancy rates, using the model

Teeni = �
Pn

j=1GijTeenj + �+ Edui�1 + Incoi�2 + FHHi�3 +Blacki�4 + Phyi�5 + "i;

where Teeni is the teenage pregnancy rate in county i, which is the percentage of pregnancies

occurring to females 12-17 years old, and Gij is the row-normalized entry of the original link

matrix G�n, where G�ij = 1 if counties i and j are neighboring counties. Edui is the education

service expenditure (in units of $100), Incoi is median household income (divided by 1000), FHHi
is the percentage of female-headed households, Blacki is the proportion of black population and

Phyi is the number of physicians per 1000 population, all in county i.5

The sample size is n = 761. Among all the 761 � 760 = 578; 360 entries (diagonal are zero) in

the original network G�n, there are 4; 606 non-zero links. We treat the adjacency matrix they report

as the true network, artiÖcially introduce misclassiÖed links, and then evaluate how this a¤ect the

2SLS estimates. We generate misclassiÖed links using H�ij = G�ij � e1i + (1 � G�ij) � e2i, where e1i
and e2i are binary variables with probabilities �1i = �in

s�1 and �2i = 100�in
s�2 of equaling 1. We

set �i = (yi=y)
2; so for each individual i misclassiÖcation is more likely to happen the larger is the

magnitude of the observed outcome yi.

We report 2SLS estimates using HnXn and H2nXn as instruments. Unlike our structural model,

Lin and Lee (2010) assume contextual e¤ects (the  coe¢ cients) are zero, so GnXn does not appear

as regressors. It would therefore have been possible to just use HnXn as instruments for estimation.

Nonetheless, to illustrate our proposition, we use both HnXn and H2nXn as instruments here.

Table 2 reports results based on 1000 Monte Carlo replications for each value of s. Results are

reported where the model is estimated both with and without row normalization.

Consistent with our propositions, when the misclassiÖcation rate is low (s < 0:5), the 2SLS



Table 2. Estimation Results with Di¤erent MisclassiÖcation Rates

� � 100�1 �2 �3 �4 �5 Mis. #

Row-normalized adjacency matrices Gij = G�ij=
�P

j G
�
ij

�
and Hij = H�ij=

�P
j H

�
ij

�
True 0.4813 6.1911 -0.9824 -0.1871 0.7347 0.1267 -0.4956 0

(0.079) (1.469) (0.651) (0.040) (0.063) (0.057) (0.188)

s = 0:1 0.4897 6.1085 -0.9910 -0.1878 0.7355 0.1289 -0.4980 111

(0.081) (1.480) (0.651) (0.040) (0.063) (0.057) (0.188)

s = 0:3 0.5132 5.8759 -1.0086 -0.1895 0.7375 0.1341 -0.5049 418

(0.085) (1.512) (0.652) (0.040) (0.063) (0.057) (0.188)

s = 0:5 0.6017 4.9578 -1.0542 -0.1943 0.7422 0.1465 -0.5227 1578

(0.099) (1.626) (0.654) (0.040) (0.063) (0.057) (0.189)

s = 0:7 0.8138 2.7629 -1.1726 -0.2092 0.7589 0.1683 -0.5535 5948

(0.139) (1.985) (0.660) (0.040) (0.064) (0.057) (0.191)

Original adjacency matrices G�ij and H�ij without normalization

True 0.0239 10.840 -1.5244 -0.2348 0.8151 0.2061 -0.5731 0

(0.009) (1.261) (0.669) (0.041) (0.064) (0.058) (0.194)

s = 0:1 0.0275 10.491 -1.5290 -0.2317 0.8087 0.2069 -0.5658 111

(0.009) (1.248) (0.666) (0.040) (0.064) (0.057) (0.193)

s = 0:3 0.0356 9.6492 -1.5361 -0.2239 0.7916 0.2079 -0.5463 418

(0.008) (1.216) (0.659) (0.040) (0.063) (0.057) (0.191)

s = 0:5 0.0486 7.5887 -1.5473 -0.2039 0.7351 0.2058 -0.4813 1578

(0.005) (1.130) (0.633) (0.038) (0.061) (0.055) (0.184)

s = 0:7 0.0442 4.9575 -1.5211 -0.1749 0.6170 0.1858 -0.3396 5948

(0.003) (0.984) (0.571) (0.034) (0.055) (0.049) (0.166)

Note: The table reports average estimates and average standard errors (in parentheses)

from 1000 simulated samples.

6 Conclusions

We show that in 2SLS estimation of linear social network models, measurement errors in the

network can be safely ignored by the researcher if the number and magnitude of measurement errors

in the adjacency matrix grows su¢ ciently slowly with the sample size. Moreover, these results hold

even if the measurement errors are correlated with model errors, covariates, and outcomes. A useful

agenda for future work would be to see if similar results can be obtained for more general network

models.
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Appendix

For a generic matrix A, let A(i), A[k] denote its i-th row and k-th column respectively; and Aij
denote its (i; j)-th component, so that A(i)� is the sum of the i-th row in A. Let ��

1n � H�n � G�n
and ��

2n � H�n � C�n with H�ii = 0 by construction. With row normalization,

�1n � Hn �Gn = diag

��
1

G�
(1)

� ; :::;
1

G�
(n)

�

��
��
1



Hence, there exists some constant M� <1 with PrfsupiE(jyijj�n) �M�g = 1. �

Proof of Proposition 1 . Recall

b� � �0 =

24 eR0n eVn
n

 eV 0n eVn
n

!�1 eV 0n eRn
n

35�1 eR0n eVn
n

 eV 0n eVn
n

!�1 eV 0ne�n
n

(4)

where

1

n
eV 0n eRn =

1

n
V 0nRn +

1

n
V 0n(0;�1nYn; 0;�2nXn)

+
1

n
(0; (Gn�1n + �1nGn + �2

1n)Xn; 0;�2nXn)0Rn

+
1

n
(0; (Gn�1n + �1nGn + �2

1n)Xn; 0;�2nXn)0(0;�1nYn; 0;�2nXn):

1

n
eV 0n eVn =

1

n
V 0nVn +

1

n
V 0n(0; (Gn�1n + �1nGn + �2

1n)n+ �2
1



Using Lemma A1, we can show that

bA = A+Op(ns�1)

and

bB = B + R0nVn
n

�
V 0nVn
n

��1� 1

n
eV 0nb�n

eVn � 1

n
V 0n�nVn

��
V 0nVn
n

��1 V 0nRn
n

+Op(ns�1):

Then, what left is to show that from the fact that 1
n
eV 0nb�n

eVn � 1
nV

0
n�nVn is op(1): As

1

n
eV 0nb�n

eVn � 1

n
V 0n�nVn =

1

n
V 0n

�b�n � �n

�
Vn +Op(ns�1);

and the Örst term on the RHS is Op(n�1=2 _ ns�1) because

1

n
V 0n

�b�n � �n

�
Vn =

1

n

nX
i=1

�
(Yn � eRnb�)(i)]2 � E("2i )

�
viv

0
i

=
1

n

nX
i=1

viv
0
i["
2
i � E("2i )] +

1

n

nX
i=1

viv
0
i

�
[ eRi(�0 � b�)]2 + [(�0�1nYn + �2nXn0)(i)]

2
�

+
2

n

nX
i=1

viv
0
i
eRi(�0 � b�)"i � 2

n

nX
i=1

viv
0
i[
eRi(�0 � b�) + "i](�0�1nYn + �2nXn0)(i)

= Op(n�1=2) +Op(�0 � b�) +Op(ns�1) = Op(n�1=2 _ ns�1)

Together, we have bA�1 bB bA�1 �A�1BA�1 = Op(n�1=2 _ ns�1) = op(1).
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